Featured Post
Arguments against abortion Essay Example | Topics and Well Written Essays - 750 words
Contentions against fetus removal - Essay Example The discussion lies on when and whether fetus removal ought to be done and the degree t...
Sunday, December 1, 2019
Processor Comparison Essays - Instruction Set Architectures
Processor Comparison 1. Investigate the instruction set and architectural features of a modern RISC processor such as the Digital Equipment Corporation Alpha or Motorola/IBM PowerPC. In what ways does it differ from the architecture of the Intel Pentium processor family? The main difference between the architectures of Digital Equipment Corporation's (DEC) Alpha and Intel's Pentium processors are the instruction sets. In this paper I intend on defining both RISC and CISC processors. In doing this I will be comparing DEC's Alpha 21164 (a microprocessor that implements the Alpha architecture) and also Intel's Pentium processors (from the Pentium-R through the Pentium II). Reduced Instruction Set Computing or RISC processing is a CPU architecture with an instruction set that eliminates some (but not all) complex instructions by pairing down and reducing them in complexity so that instructions can be performed in a single processor cycle. This is accomplished through high-level compilers that breakdown the more complex, less frequently used instructions into simpler instructions. Thus, allowing the RISC architecture to im-plement a smaller instruction set that utilizes more registers and eliminating the need for microcode. The Alpha architecture is a 64-bit load and store RISC architecture designed with particular emphasis on speed, multiple instruction issue, multiple processors, and software migration from many operating systems. (1, pg. 1-1) Most recent CPU designs are superscalar and superpipelined. Superscalar means that the architecture provides two pipelines for executing multiple instructions in parallel. Superpipelining increases the number of pipeline stages, allowing for results from either pipeline to be simultaneously used to avoid stalls thus, improving data flow by removing data dependency. The 21164 microprocessor is a superscalar pipelined processor manufactured using 0.5-micron CMOS (Complementary Metal Oxide Semi-conductor) technology. (1, pg.1-3) The Alpha 21164 can issue four instructions in a single clock cycle. This combined with the low-latency and/or high-throughput features in the instruction issue unit and the on-chip components of the memory subsystem reduce the average cycl es per instruction. All data manipulation is done between registers. The registers are 64 bits in length and all instructions are 32 bits in length. Memory operations are either load or store operations. Since many early computers had extremely limited memory and processing power, complex instruction sets were developed. Complex instruction computing or CISC processing is a CPU architecture in which a large number of instructions are hardcoded into the chip. Intel's Pentium processors still adhere to this philosophy. The Pentium processor was Intel's first CPU to employ superscalar architecture. With its 3.3 million transistors it is able to execute two instructions per clock cycle resulting in twice the integer performance relative of an Intel 486 CPU running at the same frequency. Pentium also employed on-chip dual-processing support as well as an onboard interrupt controller. Next came the Pentium Pro, which introduced dynamic execution technology that pre-dicts the program flow through multiple branches. Multiple branch prediction lets the CPU pre-fetch possible next instructions rather than waiting for the outcome. This technology can actually change the order of executed instructions based on analyzed data dependencies, which in turn provides optimum execution speed. However, the Pentium Pro was only available in speeds from 150MHz to 200MHz and has only 16KB of internal cache (half as much as the MMX). In 1997 Intel introduced the Pentium MMX processor. The MMX processor added1.2 million more transistors (4.5 million total) and also SIMD technology (Single Instruction, Multiple Data). SIMD technology included 57 new instructions, 4 new data types and eight 64-bit registers. As in the original Pentium, the MMX Pentium provides both a fixed-point integer data path that allows up to two operations to be executed simultaneously, and a floating point data path that allows one operation to be performed at a time. In addition, the MMX Pentium provides a new MMX data path that allows up to two MMX operations to execute simultaneously, or up to one MMX operation and one integer operation (in the integer data path) to execute simultaneously. The inte-ger data path includes two ALUs and supports operations on 8-, 16-, and 32-bit integers. (4) The MMX processor is available in speeds from 166MHz to 333MHz. Finally the Pentium II processor combines the best features of both the Pentium Pro and Pentium MMX on one chip. Including a 64-bit dual
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.